LT3497EDDB [Linear Systems]

Dual Full Function White LED Driver with Integrated Schottky Diodes; 双路全功能的白光LED驱动器,集成肖特基二极管
LT3497EDDB
型号: LT3497EDDB
厂家: Linear Systems    Linear Systems
描述:

Dual Full Function White LED Driver with Integrated Schottky Diodes
双路全功能的白光LED驱动器,集成肖特基二极管

驱动器 肖特基二极管
文件: 总20页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3497  
Dual Full Function White  
LED Driver with Integrated  
Schottky Diodes  
FEATURES  
DESCRIPTION  
The LT®3497 is a dual full function step-up DC/DC con-  
verter specifically designed to drive up to 12 white LEDs  
(6whiteLEDsinseriesperconverter)fromaLi-Ioncell.Se-  
riesconnectionoftheLEDsprovidesidenticalLEDcurrents  
resulting in uniform brightness and eliminating the need  
for ballast resistors and expensive factory calibration.  
Drives Up to 12 White LEDs (6 in Series per  
Converter) from a 3V Supply  
Two Independent Boost Converters Capable of  
Driving Asymmetric LED Strings  
Independent Dimming and Shutdown Control of the  
Two LED Strings  
High Side Sense Allows “One Wire Current Source”  
The two independent converters are capable of driving  
asymmetric LED strings. Accurate LED dimming and  
shutdown of the two LED strings can also be controlled  
independently.TheLT3497featuresauniquehighsideLED  
current sense that enables the part to function as a “one  
wire current source;” one side of the LED string can be  
returned to ground anywhere, allowing a simpler 1-wire  
LED connection. Traditional LED drivers use a grounded  
resistor to sense LED current, requiring a 2-wire connec-  
tion to the LED string.  
per Converter  
Internal Schottky Diodes  
Open LED Protection (32V)  
2.3MHz Switching Frequency  
±±5 ꢀeference Accuracy  
V ꢀange: 2.±V to 10V  
IN  
Dual Wide 2±0:1 True Color PWMTM Dimming  
ꢀequires Only 1µF Output Capacitor per Converter  
Available in a 3mm × 2mm 10-Pin DFN Package  
The 2.3MHz switching frequency allows the use of tiny  
inductors and capacitors. Few external components are  
neededforthedualwhiteLEDDriver:open-LEDprotection  
and the Schottky diodes are all contained inside the 3mm  
× 2mm DFN package. With such a high level of integra-  
tion, the LT3497 provides a high efficiency dual white LED  
driver solution in the smallest of spaces.  
APPLICATIONS  
Cellular Phones  
PDAs, Handheld Computers  
Digital Cameras  
MP3 Players  
GPS ꢀeceivers  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
True Color PWM is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Li-Ion Power Driver for 4/4 White LEDs  
Efficiency  
V
80  
IN  
3V TO 5V  
V
= 3.6V  
IN  
4/4LEDs  
75  
1µF  
15µH  
SW1  
15µH  
SW2  
70  
65  
V
IN  
CAP1  
CAP2  
60  
55  
50  
LT3497  
10Ω  
10Ω  
1µF  
1µF  
LED1  
LED2  
CTRL1  
CTRL2  
GND  
3497 TA01a  
OFF ON  
OFF ON  
0
5
10  
15  
20  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
LED CURRENT (mA)  
3497 TA01b  
3497f  
1
LT3497  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
Input Voltage (VIN) ...................................................10V  
SW1, SW2 Voltages..................................................3±V  
CAP1, CAP2 Voltages................................................3±V  
CTꢀL1, CTꢀL2 Voltages............................................10V  
LED1, LED2 Voltages ................................................3±V  
Operating Temperature ꢀange ................. –40°C to 8±°C  
Maximum Junction Temperature .......................... 12±°C  
Storage Temperature ꢀange................... –6±°C to 12±°C  
TOP VIEW  
1
2
3
4
5
10  
9
LED1  
CTRL1  
GND  
CAP1  
SW1  
11  
8
V
IN  
7
CTRL2  
LED2  
SW2  
6
CAP2  
DDB PACKAGE  
10-LEAD (3mm × 2mm) PLASTIC DFN  
= 12±°C, θ = 76°C/W, θ = 13.±°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDEꢀED TO PCB  
OꢀDEꢀ PAꢀT NUMBEꢀ  
LT3497EDDB  
DDB PAꢀT MAꢀKING  
LCGT  
Order Options Tape and ꢀeel: Add #Tꢀ  
Lead Free: Add #PBF Lead Free Tape and ꢀeel: Add #TꢀPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 3V, V  
= V  
= 3V.  
A
IN  
CTRL1  
CTRL2  
PARAMETER  
CONDITIONS  
MIN  
2.±  
190  
190  
0
TYP  
MAX  
UNITS  
V
Minimum Operating Voltage  
LED Current Sense Voltage (V  
LED Current Sense Voltage (V  
– V  
– V  
)
)
V
V
V
= 16V  
= 16V  
200  
200  
2
210  
210  
8
mV  
mV  
mV  
CAP1  
CAP2  
LED1  
CAP1  
LED2  
CAP2  
Offset Voltage (V ) Between  
= |(V  
– V  
) – (V  
– V )|  
LED2  
OS  
) – (V  
OS  
CAP1  
LED1  
CAP2  
(V  
CAP1  
– V  
– V  
) Voltages  
LED2  
LED1  
CAP2  
CAP1, LED1 Pin Bias Current  
CAP2, LED2 Pin Bias Current  
V
V
= 16V, V  
= 16V, V  
= 16V  
20  
20  
40  
40  
µA  
µA  
V
CAP1  
LED1  
= 16V  
CAP2  
LED2  
V
V
, V  
Common Mode Minimum Voltage  
Common Mode Minimum Voltage  
2.±  
2.±  
8.±  
CAP1 LED1  
, V  
V
CAP2 LED2  
Supply Current  
V
V
= V  
= 16V, V  
= V  
= 1±V,  
6
mA  
CAP1  
CTꢀL1  
CAP2  
LED1  
LED2  
= V  
= 3V  
CTꢀL2  
V
= V  
= 0V  
12  
2.3  
92  
18  
µA  
MHz  
5
CTꢀL1  
CTꢀL2  
Switching Frequency  
1.8  
88  
2.8  
Maximum Duty Cycle  
Converter 1 Switch Current Limit SW1  
Converter 2 Switch Current Limit SW2  
300  
300  
400  
400  
200  
200  
0.1  
0.1  
mA  
mA  
mV  
mV  
µA  
Converter 1 V  
Converter 2 V  
I
I
= 200mA  
= 200mA  
= 16V  
CESAT  
CESAT  
SW1  
SW2  
Switch 1 Leakage Current  
Switch 2 Leakage Current  
V
V
±
±
SW1  
= 16V  
µA  
SW2  
3497f  
2
LT3497  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
= V = 3V.  
temperature range, otherwise specifications are at T = 25°C. V = 3V, V  
A
IN  
CTRL1  
CTRL2  
PARAMETER  
CONDITIONS  
MIN  
1.±  
TYP  
MAX  
UNITS  
V
V
CTꢀL1  
V
CTꢀL2  
V
CTꢀL1  
V
CTꢀL1  
Voltage for Full LED Current  
Voltage for Full LED Current  
V
= 16V  
= 16V  
CAP1  
CAP2  
V
1.±  
V
or V  
Voltage to Turn On the IC  
100  
mV  
mV  
nA  
V
CTꢀL2  
and V  
Voltages to Shut Down the IC  
±0  
CTꢀL2  
CTꢀL1, CTꢀL2 Pin Bias Current  
CAP1 Pin Overvoltage Protection  
CAP2 Pin Overvoltage Protection  
Schottky 1 Forward Drop  
100  
32  
30  
30  
34  
34  
32  
V
I
I
= 100mA  
= 100mA  
0.8  
0.8  
V
SCHOTTKY1  
Schottky 2 Forward Drop  
V
SCHOTTKY2  
Schottky 1 ꢀeverse Leakage Current  
Schottky 2 ꢀeverse Leakage Current  
V
= 2±V  
= 2±V  
4
4
µA  
µA  
ꢀ1  
ꢀ2  
V
Note 1: Stresses beyond those listed under Absolute Maximum ꢀatings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum ꢀating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3497E is guaranteed to meet performance specifications  
from 0°C to 8±°C. Specifications over the –40°C to 8±°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
3497f  
3
LT3497  
(T = 25°C unless otherwise specified)  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Switch Saturation Voltage  
CESAT  
Shutdown Current  
(V  
)
Schottky Forward Voltage Drop  
(V  
= V  
= 0V)  
CTRL1  
CTRL2  
15  
12  
9
450  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
–50°C  
–50°C  
125°C  
25°C  
125°C  
25°C  
125°C  
25°C  
200  
150  
6
–50°C  
100  
50  
0
3
0
0
200 250  
2
6
0
50 100 150  
300 350 400  
200  
400  
800  
0
4
8
10  
0
1000  
600  
SWITCH CURRENT (mA)  
V
(V)  
IN  
SCOTTKY FORWARD DROP (mV)  
3497 G01  
3497 G03  
3497 G02  
Sense Voltage (V  
– V  
)
LED  
Open-Circuit Output Clamp  
Voltage  
Input Current in Output Open  
Circuit  
CAP  
vs V  
CTRL  
34  
33  
32  
31  
30  
240  
200  
30  
25  
25°C  
150°C  
160  
120  
20  
15  
–50°C  
–50°C  
125°C  
125°C  
25°C  
25°C  
80  
40  
0
10  
5
–50°C  
0
0
2
4
6
8
10  
0
500  
1000  
1500  
2000  
2
4
6
8
10  
V
(mV)  
V
(V)  
IN  
V
(V)  
CTRL  
IN  
3497 G05  
3497 G04  
3497 G06  
Switching Waveform  
Transient Response  
V
CAP  
V
SW  
5V/DIV  
10V/DIV  
V
CTRL  
V
CAP  
5V/DIV  
50mV/DIV  
I
I
L
L
100mA/DIV  
200mA/DIV  
3497 G07  
3497 G08  
V
= 3.6V  
200ms/DIV  
V
= 3.6V  
1ms/DIV  
IN  
IN  
FRONT PAGE  
APPLICATION CIRCUIT  
FRONT PAGE  
APPLICATION CIRCUIT  
3497f  
4
LT3497  
(T = 25°C unless otherwise specified)  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Schottky Leakage Current vs  
Temperature (–50°C to 125°C)  
Quiescent Current  
Current Limit vs Temperature  
3
2
1
0
7
6
500  
450  
400  
350  
125°C  
25°C  
5
4
3
2
1
0
–50°C  
24V  
16V  
300  
2
4
6
10  
0
8
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
IN  
3497 G09  
3497 G11  
3497 G12  
Input Current in Output Open  
Circuit vs Temperature  
(–50°C to 125°C)  
Open-Circuit Output Clamp Voltage  
vs Temperature (–50°C to 125°C)  
Switching Frequency vs  
Temperature  
36  
34  
32  
30  
30  
25  
20  
15  
2.60  
V
= 3.6V  
V
IN  
= 3V  
IN  
2.50  
2.40  
2.30  
2.20  
2.10  
2.00  
1.90  
10  
5
28  
0
1.80  
–50 –25  
0
25  
50  
75 100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3497 G13  
3497 G14  
3497 G15  
Sense Voltage (V  
– V  
)
LED  
CAP  
Sense Voltage vs Temperature  
vs V  
CAP  
208  
204  
200  
196  
192  
188  
206  
202  
198  
194  
125°C  
–50°C  
25°C  
190  
5
10  
15  
20  
(V)  
25  
30  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
V
CAP  
3497 G16  
3497 G17  
3497f  
5
LT3497  
PIN FUNCTIONS  
LED1 (Pin 1): Connection point for the anode of the first  
CAP2 (Pin 6): Output of Converter 2. This pin is connected  
LEDoftherstsetofLEDsandthesenseresistor(ꢀ  
The LED current can be programmed by:  
).  
to the cathode of internal Schottky diode 2. Connect the  
SENSE1  
outputcapacitortothispinandthesenseresistor(ꢀ  
from this pin to LED2 pin.  
)
SENSE2  
200mV  
RSENSE1  
ILED1  
=
SW2 (Pin 7): Switch Pin. Minimize trace area at this pin  
to minimize EMI. Connect the inductor at this pin.  
CTRL1 (Pin 2): Dimming and Shutdown Pin. Connect  
CTꢀL1 below ±0mV to disable converter 1. As the pin volt-  
ageisrampedfrom0Vto1V,theLEDcurrentrampsfrom  
V
(Pin 8): Input Supply Pin. This pin must be locally  
IN  
bypassed.  
0 to (I  
= 200mV/ꢀ  
). The CTꢀL1 pin must not  
SW1 (Pin 9): Switch Pin. Minimize trace area at this pin  
to minimize EMI. Connect the inductor at this pin.  
LED1  
be left floating.  
SENSE1  
GND (Pin 3): Connect the GND pin to the PCB system  
CAP1(Pin10):OutputofConverter1.Thispinisconnected  
ground plane.  
to the cathode of internal Schottky diode 1. Connect the  
outputcapacitortothispinandthesenseresistor(ꢀ  
from this pin to LED1 pin.  
)
SENSE1  
CTRL2 (Pin 4): Dimming and Shutdown Pin. Connect  
CTꢀL2 below ±0mV to disable converter 2. As the pin volt-  
ageisrampedfrom0Vto1V,theLEDcurrentrampsfrom  
Exposed Pad (Pin 11): Ground. Must be soldered to  
PCB.  
0 to (I  
= 200mV/ꢀ  
). The CTꢀL2 pin must not  
LED2  
be left floating.  
SENSE2  
LED2 (Pin 5): Connection point for the anode of the first  
LED of the second set of LEDs and the sense resistor  
(ꢀ ). The LED current can be programmed by:  
SENSE2  
200mV  
RSENSE2  
ILED2  
=
3497f  
6
LT3497  
BLOCK DIAGRAM  
3497f  
7
LT3497  
OPERATION  
Main Control Loop  
A1, sets the correct peak current level in inductor L1 to  
keep the output in regulation. The CTꢀL1 pin is used to  
adjust the LED current.  
TheLT3497usesaconstantfrequency, currentmodecon-  
trol scheme to provide excellent line and load regulation.  
It incorporates two identical, but fully independent PWM  
converters. Operationcanbebestunderstoodbyreferring  
to the Block Diagram in Figure 1. The oscillator, start-up  
biasandthebandgapreferencearesharedbetweenthetwo  
converters. The control circuitry, power switch, Schottky  
diode etc., are identical for both the converters.  
Ifonlyoneoftheconvertersisturnedon,theotherconverter  
will stay off and its output will remain charged up to V  
IN  
(input supply voltage). The LT3497 enters into shutdown  
when both CTꢀL1 and CTꢀL2 pins are pulled lower than  
±0mV. The CTꢀL1 and CTꢀL2 pins perform independent  
dimming and shutdown control for the two converters.  
At power up, the capacitors at CAP1 and CAP2 pins are  
Minimum Output Current  
chargeduptoV (inputsupplyvoltage)viatheirrespective  
IN  
The LT3497 can drive a 4-LED string at 2mA LED current  
without pulse skipping. As current is further reduced, the  
device may begin skipping pulses.  
inductor and the internal Schottky diode. If either CTꢀL1  
and CTꢀL2 or both are pulled higher than 100mV, the  
bandgap reference, the start-up bias and the oscillator  
are turned on.  
This will result in some low frequency ripple, although the  
average LED current remains regulated down to zero. The  
photo in Figure 2 details circuit operation driving 4 white  
LEDs at 2mA. Peak inductor current is less than ±0mA and  
the regulator operates in discontinuous mode, meaning  
the inductor current reaches zero during the discharge  
phase. After the inductor current reaches zero, the SW  
pin exhibits ringing due to the LC tank circuit formed  
by the inductor in combination with the switch and the  
diode capacitance. This ringing is not harmful; far less  
spectral energy is contained in the ringing than in the  
switch transitions.  
The main control loop can be understood by following the  
operationofconverter1.Atthestartofeachoscillatorcycle,  
the power switch, Q1, is turned on. A voltage proportional  
to the switch current is added to a stabilizing ramp and the  
resulting sum is fed into the positive terminal of the PWM  
comparator, A2. When this voltage exceeds the level at the  
negative input of A2, the PWM logic turns off the power  
switch. The level at the negative input of A2 is set by the  
error amplifier, A1, and is simply an amplified version of  
the difference between the V  
and V  
voltage and  
CAP1  
LED1  
the bandgap reference. In this manner the error amplifier,  
I
L
50mA/DIV  
V
SW  
10V/DIV  
3497 F02  
V
= 4.2V  
200ns/DIV  
IN  
I
= 2mA  
LED  
4 LEDs  
Figure 2. Switching Waveforms  
3497f  
8
LT3497  
APPLICATIONS INFORMATION  
DUTY CYCLE  
15µH MURATA LQH32CN150K53  
15µH MURATA LQH2MCN150K02  
15µH COOPER SD3112-150  
15µH TOKO 1001AS-150M TYPE D312C  
15µH SUMIDA CDRH2D11/HP  
The duty cycle for a step-up converter is given by:  
80  
75  
70  
VOUT + VD – V  
VOUT + VD – VCESAT  
IN  
D=  
where:  
65  
60  
55  
50  
45  
V
= Output voltage  
OUT  
V = Schottky forward voltage drop  
V
V = Input voltage  
D
= Saturation voltage of the switch  
CESAT  
IN  
The maximum duty cycle achievable for LT3497 is 885  
when running at 2.3MHz switching frequency. Always  
ensure that the converter is not duty-cycle limited when  
powering the LEDs at a given frequency.  
5
10  
20  
0
15  
3497 F03  
LED CURRENT (mA)  
Figure 3. Efficiency Comparison of Different Inductors  
and a 1µF output capacitor are sufficient for most applica-  
tions. Table 2 shows a list of several ceramic capacitor  
manufacturers. Consult the manufacturers for detailed  
information on their entire selection of ceramic parts.  
INDUCTOR SELECTION  
A 1±µH inductor is recommended for most LT3497 ap-  
plications. Although small size and high efficiency are  
major concerns, the inductor should have low core losses  
at 2.3MHz and low DCꢀ (copper wire resistance). Some  
inductors in this category with small size are listed in  
Table 1. The efficiency comparison of different inductors  
is shown in Figure 3.  
Table 2: Recommended Ceramic Capacitor Manufacturers  
Taiyo Yuden  
(800) 368-2496  
www.t-yuden.com  
AVX  
(803) 448-9411  
www.avxcorp.com  
Murata  
(714) 8±2-2001  
www.murata.com  
Table 1: Recommended Inductors  
MAX  
DCR  
(Ω)  
CURRENT  
RATING  
(mA)  
L
(µH)  
OVERVOLTAGE PROTECTION  
PART  
VENDOR  
LQH32CN1±0K±3  
LQH2MCN1±0K02  
LQH32CN100K±3  
LQH2MCN100K02  
1±  
1±  
10  
10  
0.±8  
1.6  
0.3  
1.2  
300  
200  
4±0  
22±  
Murata  
The LT3497 has an internal open-circuit protection  
circuit for both converters. In the cases of output open  
circuit, when the LEDs are disconnected from the circuit  
www.murata.com  
SD3112-1±0  
1±  
0.6±4  
440  
Cooper  
www.cooperet.com  
or the LEDs fail open circuit, the converter V  
voltage  
CAP  
is clamped at 32V (typ). Figure 4a shows the transient  
response of the front page application step-up converter  
with LED1 disconnected. With LED1 disconnected, the  
converter starts switching at the peak inductor current  
limit. The converter output starts ramping up and finally  
gets clamped at 32V (typ). The converter will then switch  
at low inductor current to regulate the converter output  
1001AS-1±0M  
(TYPE D312C)  
1±  
1±  
0.80  
360  
410  
Toko  
www.toko.com  
CDꢀH2D11/HP  
0.739  
Sumida  
www.sumida.com  
CAPACITOR SELECTION  
The small size of ceramic capacitors make them ideal for  
LT3497applications.UseonlyX±andX7typesbecause  
theyretaintheircapacitanceoverwidertemperatureranges  
thanothertypessuchasY±VorZ±U.A1µFinputcapacitor  
at the clamp voltage. The V  
and input current during  
CAP  
output open circuit are shown in the Typical Performance  
Characteristics.  
3497f  
9
LT3497  
APPLICATIONS INFORMATION  
For low DCꢀ inductors, which are usually the case for this  
application, the peak inrush current can be simplified as  
follows:  
V
CAP  
10V/DIV  
r
α =  
2•L  
I
SW  
200mA/DIV  
1
L C  
r2  
ω =  
4•L2  
3497 F04a  
V
= 3.6V  
500µs/DIV  
IN  
FRONT PAGE  
APPLICATION CIRCUIT  
LEDs DISCONNECTED  
AT THIS INSTANT  
V 0.6  
α π  
• exp – •  
IN  
IPK  
=
L ω  
ω 2  
Figure 4a. Transient Response of Switcher 1 with LED1  
Disconnected from the Output  
where L is the inductance, r is the DCꢀ of the inductor  
and C is the output capacitance.  
I
L1  
50mA/DIV  
Table 3 gives inrush peak currents for some component  
selections.  
V
SW1  
20V/DIV  
Table 3: Inrush Peak Currents  
I
L2  
50mA/DIV  
V
(V)  
r (Ω)  
L (µH)  
C
(µF)  
I (A)  
P
IN  
OUT  
V
4.2  
0.±8  
1.6  
1±  
1±  
1±  
1±  
1
0.828  
0.682  
0.794  
0.803  
SW2  
20V/DIV  
4.2  
4.2  
4.2  
1
1
1
3497 F04b  
V
= 3.6V  
200ms/DIV  
0.8  
IN  
4 LEDs  
0.739  
LED 2 DISCONNECTED  
Figure 4b. Switching Waveforms with Output 1 Open Circuit  
PROGRAMMING LED CURRENT  
The LED current of each LED string can be set indepen-  
dently by the choice of resistors ꢀ and ꢀ  
In the event one of the converters has an output open  
circuit, its output voltage will be clamped at 32V. However,  
the other converter will continue functioning properly.  
The photo in Figure 4b shows circuit operation with  
converter 2 output open circuit and converter 1 driving  
4 LEDs at 20mA. Converter 2 starts switching at a lower  
peakinductorcurrentandbeginsskippingpulses, thereby  
reducing its input current.  
,
SENSE2  
SENSE1  
respectively. For each LED string, the feedback resistor  
(ꢀ ) and the sense voltage (V – V ) control the  
SENSE  
CAP  
LED  
LED current.  
For each independent LED string, the CTꢀL pin controls  
the sense reference voltage as shown in the Typical  
Performance Characteristics. For CTꢀL higher than 1.±V,  
the sense reference is 200mV, which results in full LED  
current. In order to have accurate LED current, precision  
resistorsarepreferred(15isrecommended).Theformula  
INRUSH CURRENT  
The LT3497 has built-in Schottky diodes. When supply  
voltage is applied to the V pin, an inrush current flows  
IN  
and Table 4 for ꢀ  
selection are shown below.  
SENSE  
through the inductor and the Schottky diode and charges  
uptheCAPvoltage.BoththeSchottkydiodesintheLT3497  
can sustain a maximum current of 1A. The selection of  
inductor and capacitor value should ensure the peak of  
the inrush current to be below 1A.  
200mV  
ILED  
RSENSE  
=
3497f  
10  
LT3497  
APPLICATIONS INFORMATION  
Table 4: R  
Value Selection for 200mV Sense  
SENSE  
I
(mA)  
R
(Ω)  
LT3497  
R1  
100k  
LED  
SENSE  
PWM  
10kHz TYP  
±
40  
CTRL1,2  
C1  
0.1µF  
3497 F05  
10  
1±  
20  
20  
13.3  
10  
Figure 5. Dimming Control Using a Filtered PWM Signal  
Direct PWM Dimming  
DIMMING CONTROL  
Changing the forward current flowing in the LEDs not only  
changestheintensityoftheLEDs,italsochangesthecolor.  
The chromaticity of the LEDs changes with the change in  
forward current. Many applications cannot tolerate any  
shift in the color of the LEDs. Controlling the intensity of  
the LEDs with a direct PWM signal allows dimming of the  
LEDs without changing the color. In addition, direct PWM  
dimming offers a wider dimming range to the user.  
Therearethreedifferenttypesofdimmingcontrolcircuits.  
The LED current can be set by modulating the CTꢀL pin  
with a DC voltage, a filtered PWM signal or directly with  
a PWM signal.  
Using a DC Voltage  
Forsomeapplications,thepreferredmethodofbrightness  
control is a variable DC voltage to adjust the LED current.  
The CTꢀL pin voltage can be modulated to set the dim-  
ming of the LED string. As the voltage on the CTꢀL pin  
increases from 0V to 1.±V, the LED current increases from  
Dimming the LEDs via a PWM signal essentially involves  
turning the LEDs on and off at the PWM frequency. The  
typical human eye has a limit of ~60 frames per second.  
By increasing the PWM frequency to ~80Hz or higher,  
the eye will interpret that the pulsed light source is con-  
tinuously on. Additionally, by modulating the duty cycle  
(amount of “on time”) the intensity of the LEDs can be  
controlled. The color of the LEDs remains unchanged in  
this scheme since the LED current value is either zero or  
a constant value.  
0 to I . As the CTꢀL pin voltage increases beyond 1.±V,  
LED  
it has no effect on the LED current.  
The LED current can be set by:  
200mV  
ILED  
when VCTRL >1.5V  
RSENSE  
VCTRL  
6.25RSENSE  
ILED  
when VCTRL <1.25V  
Figure6showsaLi-ionpowered4/4whiteLEDdriver.Direct  
PWM dimming method requires an external NMOS tied  
between the cathode of the lowest LED in the string and  
ground as shown in Figure 6. Si2318DS MOSFETs can be  
used since its sources are connected to ground. The PWM  
signal is applied to the (CTꢀL1 and CTꢀL2) control pins of  
the LT3497 and the gate of the MOSFET. The PWM signal  
should traverse between 0V to ±V to ensure proper turn  
on and off of the converters and the NMOS transistors (Q1  
and Q2). When the PWM signal goes high, LEDs are con-  
Feedback voltage variation versus control voltage is given  
in the Typical Performance Characteristics.  
Using a Filtered PWM Signal  
A filtered PWM can be used to control the brightness of  
the LED string. The PWM signal is filtered (Figure ±) by a  
ꢀC network and fed to the CTꢀL1, CTꢀL2 pins.  
The corner frequency of ꢀ1, C1 should be much lower  
than the frequency of the PWM signal. ꢀ1 needs to be  
much smaller than the internal impedance in the CTꢀL  
pins which is 10MΩ (typ).  
nected to ground and a current of I = (200mV/ꢀ  
)
LED  
SENSE  
flows through the LEDs. When the PWM signal goes low,  
the LEDs are disconnected and turn off. The low PWM  
input applied to the LT3497 ensures that the respective  
3497f  
11  
LT3497  
APPLICATIONS INFORMATION  
Example:  
ƒ = 100Hz, t  
converter turns off. The MOSFETs ensure that the LEDs  
quickly turn off without discharging the output capacitors  
which in turn allows the LEDs to turn on faster. Figures 7  
and 8 show the PWM dimming waveforms and efficiency  
for the Figure 6 circuit.  
= 40μs  
SETTLE  
t
= 1/ƒ = 1/100 = 0.01s  
PEꢀIOD  
Dim ꢀange = t  
/t  
= 0.01s/40μs = 2±0:1  
PEꢀIOD SETTLE  
Min Duty Cycle = t  
/t  
• 100  
SETTLE PEꢀIOD  
= 40μs/0.01s = 0.45  
The time it takes for the LEDs current to reach its pro-  
grammed value sets the achievable dimming range for a  
given PWM frequency. For example, the settling time of  
the LEDs current in Figure 7 is approximately 40μs for a  
3V input voltage. The achievable dimming range for this  
application and 100Hz PWM frequency can be determined  
using the following method.  
Duty Cycle ꢀange = 10050.45 at 100Hz  
Thecalculationsshowthatfora100Hzsignalthedimming  
range is 2±0 to 1. In addition, the minimum PWM duty  
cycle of 0.45 ensures that the LEDs current has enough  
3V TO 5V  
1µF  
L1  
15µH  
L2  
15µH  
SW1  
V
SW2  
IN  
CAP1  
CAP2  
R
R
SENSE2  
10Ω  
SENSE1  
10Ω  
LT3497  
1µF  
1µF  
LED1  
LED2  
CTRL1  
CTRL2  
GND  
Q1  
Si2318DS  
Q2  
Si2318DS  
5V  
0V  
5V  
0V  
100k  
100k  
3497 F06  
PWM  
FREQ  
PWM  
FREQ  
Figure 6. Li-Ion to 4/4 White LEDs with Direct PWM Dimming  
80  
V
= 3.6V  
IN  
I
LED  
4/4 LEDs  
20mA/DIV  
78  
76  
74  
72  
70  
I
L
200mA/DIV  
PWM  
5V/DIV  
3497 F07  
V
= 3.6V  
2ms/DIV  
IN  
4 LEDs  
Figure 7. Direct PWM Dimming Waveforms  
0
5
10  
15  
20  
3497 F08  
LED CURRENT (mA)  
Figure 8. Efficiency  
3497f  
12  
LT3497  
APPLICATIONS INFORMATION  
time to settle to its final value. Figure 9 shows the avail-  
able dimming range for different PWM frequencies with  
a settling time of 40μs.  
3V TO 5V  
1µF  
L1  
15µH  
L2  
15µH  
10000  
SW1  
V
SW2  
IN  
CAP1  
CAP2  
R
10Ω  
R
SENSE2  
SENSE1  
1µF  
1µF  
PULSING MAY BE VISIBLE  
LT3497  
1000  
100  
10  
10Ω  
LED1  
LED2  
CTRL1  
CTRL2  
GND  
5V  
0V  
5V  
0V  
PWM  
FREQ  
PWM  
FREQ  
Q1  
Si2318DS  
Q2  
Si2318DS  
1
100k  
100k  
10  
100  
1000  
10000  
PWM FREQUENCY (Hz)  
3497 F10  
3497 F09  
Figure 10. Li-Ion to 4/4 White LEDs with Both PWM Dimming  
and Analog Dimming  
Figure 9. Dimming Ratio vs Frequency  
The dimming range can be further extended by changing  
the amplitude of the PWM signal. The height of the PWM  
signalsetsthecommandedsensevoltageacrossthesense  
resistor through the CTꢀL pin. In this manner both analog  
dimming and direct PWM dimming extend the dimming  
range for a given application. The color of the LEDs no  
longer remains constant because the forward current of  
the LED changes with the height of the CTꢀL signal. For  
the 4-LED application described above, the LEDs can be  
dimmedrst,modulatingthedutycycleofthePWMsignal.  
Once the minimum duty cycle is reached, the height of the  
PWMsignalcanbedecreasedbelow1Vdownto100mV.  
TheuseofbothtechniquestogetherallowstheaverageLED  
current for the 4-LED application to be varied from 20mA  
down to less than 20µA. Figure 10 shows the application  
for dimming using both analog dimming and PWM dim-  
ming. A potentiometer must be added to ensure that the  
gate of the NMOS receives a logic-level signal, while the  
CTꢀL signal can be adjusted to lower amplitudes.  
lower battery voltage. This technique allows the LEDs to  
be powered off two alkaline cells. Most portable devices  
have a 3.3V supply voltage which can be used to power  
the LT3497. The LEDs can be driven straight from the  
battery, resulting in higher efficiency.  
Figure 11 shows 3/3 LEDs powered by two AA cells.  
The battery is connected to the inductors and the chip is  
powered off a 3.3V logic supply voltage.  
3.3V  
2 AA CELLS  
2V TO 3.2V  
C2  
1µF  
C1  
1µF  
L1  
15µH  
L2  
15µH  
SW1  
V
SW2  
IN  
CAP1  
CAP2  
R
R
SENSE2  
10Ω  
SENSE1  
10Ω  
LT3497  
LED1  
LED2  
CTRL1  
CTRL2  
GND  
C3  
1µF  
C4  
1µF  
OFF ON  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
OFF ON  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
LOW INPUT VOLTAGE APPLICATIONS  
3497 F11  
C1, C2: TAIYO YUDEN LMK212BJ105MG  
C3, C4: TAIYO YUDEN GMK212BJ105KG  
L1, L2: MURATA LQH32CN150K53  
The LT3497 can be used in low input voltage applica-  
tions. The input supply voltage to the LT3497 must be  
2.±V or higher. However, the inductors can be run off a  
Figure 11. 2 AA Cells to 3/3 White LEDs  
3497f  
13  
LT3497  
APPLICATIONS INFORMATION  
the switching node. Place the output capacitors (C  
BOARD LAYOUT CONSIDERATIONS  
OUT1  
and C  
) next to the output pins (CAP1 and CAP2).  
OUT2  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
To prevent electromagnetic interference (EMI) problems,  
properlayoutofhighfrequencyswitchingpathsisessential.  
Minimize the length and area of all traces connected to  
the switching node pins (SW1 and SW2). Keep the sense  
voltage pins (CAP1, CAP2, LED1 and LED2) away from  
The placement of a bypass capacitor on V needs to be  
IN  
in close proximity to the IC to filter EMI noise from SW1  
and SW2. Always use a ground plane under the switching  
regulator to minimize interplane coupling. ꢀecommended  
component placement is shown in Figure 12.  
VIA TO  
GROUND PLANE  
C
OUT2  
SW2  
L2  
CAP2  
LED2  
CTRL2  
5
10  
9
C
IN  
4
VIA TO  
GROUND  
PLANE  
V
IN  
8
3
2
1
GND  
7
L1  
6
CTRL1  
CAP1  
LED1  
SW1  
C
OUT1  
3497 F12  
VIAS TO  
GROUND PLANE  
Figure 12. Recommended Component Placement  
TYPICAL APPLICATIONS  
Li-Ion to 1/2 White LEDs  
Conversion Efficiency  
V
IN  
3V TO 5V  
70  
V
= 3.6V  
IN  
1/2LEDs  
C3  
1µF  
65  
60  
55  
50  
45  
40  
35  
30  
C1  
C2  
1µF  
1µF  
L1  
L2  
10µH  
10µH  
SW1  
V
SW2  
IN  
CAP1  
CAP2  
R
R
SENSE2  
10Ω  
SENSE1  
10Ω  
LT3497  
3497 TA02a  
LED1  
CTRL1  
LED2  
CTRL2  
GND  
OFF ON  
OFF ON  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
10  
0
5
15  
20  
LED CURRENT (mA)  
3497 TA02b  
C1, C2: TAIYO YUDEN GMK212BJ105KG  
C3: TAIYO YUDEN LMK212BJ105MG  
L1, L2: MURATA LQH32CN100K53  
3497f  
14  
LT3497  
TYPICAL APPLICATIONS  
Li-Ion to 2/2 White LEDs  
Conversion Efficiency  
V
IN  
3V TO 5V  
70  
65  
V
= 3.6V  
IN  
C3  
1µF  
2/2 LEDs  
C1  
1µF  
C2  
1µF  
L1  
L2  
10µH  
10µH  
60  
55  
SW1  
V
SW2  
IN  
CAP1  
CAP2  
R
R
SENSE2  
SENSE1  
LT3497  
50  
45  
40  
10Ω  
10Ω  
LED1  
LED2  
3497 TA12a  
CTRL1  
CTRL2  
GND  
OFF ON  
OFF ON  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
0
5
10  
15  
20  
LED CURRENT (mA)  
3497 TA12b  
C1, C2: TAIYO YUDEN GMK212BJ105KG  
C3: TAIYO YUDEN LMK212BJ105MG  
L1, L2: MURATA LQH32CN100K53  
Li-Ion to 2/2 White LEDs  
Conversion Efficiency  
3V TO 5V  
80  
75  
70  
65  
60  
55  
50  
45  
40  
C3  
1µF  
V
= 3.6V  
IN  
2/2LEDs  
L1  
L2  
10µH  
10µH  
SW1  
V
SW2  
IN  
CAP1  
CAP2  
C1  
1µF  
C2  
1µF  
R
R
SENSE2  
SENSE1  
LT3497  
10Ω  
10Ω  
LED1  
CTRL1  
LED2  
CTRL2  
GND  
OFF ON  
OFF ON  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
3497TA13a  
10  
0
5
15  
20  
LED CURRENT (mA)  
C1, C2: TAIYO YUDEN GMK212BJ105KG  
C3: TAIYO YUDEN LMK212BJ105MG  
L1, L2: MURATA LQH32CN100K53  
3497 TA13b  
3497f  
15  
LT3497  
TYPICAL APPLICATIONS  
Li-Ion to 2/4 White LEDs  
Conversion Efficiency  
V
IN  
80  
75  
70  
3V TO 5V  
V
= 3.6V  
IN  
2/4LEDs  
C3  
1µF  
C1  
1µF  
L1  
10µH  
L2  
15µH  
65  
60  
55  
50  
45  
SW1  
V
SW2  
IN  
CAP1  
CAP2  
C2  
R
R
SENSE2  
SENSE1  
LT3497  
1µF  
10Ω  
10Ω  
LED1  
CTRL1  
LED2  
CTRL2  
GND  
3497 TA03a  
OFF ON  
OFF ON  
5
10  
20  
0
15  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
LED CURRENT (mA)  
3497 TA03b  
C1, C2: TAIYO YUDEN GMK212BJ105KG  
C3: TAIYO YUDEN LMK212BJ105MG  
L1: MURATA LQH32CN100K53  
L2: MURATA LQH32CN150K53  
Li-Ion to 3/3 White LEDs  
Conversion Efficiency  
V
IN  
3V TO 5V  
80  
75  
70  
V
= 3.6V  
3/3LEDs  
IN  
C3  
1µF  
L1  
15µH  
L2  
15µH  
SW1  
V
SW2  
IN  
65  
60  
55  
50  
45  
CAP1  
CAP2  
C1  
C2  
1µF  
1µF  
R
R
SENSE2  
SENSE1  
LT3497  
10Ω  
10Ω  
LED1  
CTRL1  
LED2  
CTRL2  
3497 TA04a  
GND  
OFF ON  
OFF ON  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
5
10  
20  
0
15  
LED CURRENT (mA)  
3497 TA04b  
C1, C2: TAIYO YUDEN GMK212BJ105KG  
C3: TAIYO YUDEN LMK212BJ105MG  
L1, L2: MURATA LQH32CN150K53  
3497f  
16  
LT3497  
TYPICAL APPLICATIONS  
Li-Ion to 4/6 White LEDs  
V
Conversion Efficiency  
IN  
3V TO 5V  
80  
75  
V
= 3.6V  
IN  
C3  
1µF  
4/6LEDs  
L1  
15µH  
L2  
15µH  
70  
65  
SW1  
V
SW2  
IN  
CAP1  
CAP2  
C1  
1µF  
R
R
SENSE2  
SENSE1  
LT3497  
C2  
10Ω  
10Ω  
1µF  
60  
55  
50  
LED1  
CTRL1  
LED2  
CTRL2  
GND  
OFF ON  
OFF ON  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
3497 TA05a  
0
5
10  
15  
20  
LED CURRENT (mA)  
C1, C2: TAIYO YUDEN GMK212BJ105KG  
C3: TAIYO YUDEN LMK212BJ105MG  
L1, L2: MURATA LQH32CN150K53  
3497 TA05b  
Li-Ion to 5/5 White LEDs  
Conversion Efficiency  
V
IN  
3V TO 5V  
80  
75  
V
= 3.6V  
IN  
C3  
1µF  
5/5LEDs  
L1  
15µH  
L2  
15µH  
70  
65  
SW1  
V
SW2  
IN  
CAP1  
CAP2  
C1  
1µF  
C2  
1µF  
R
R
SENSE2  
10Ω  
SENSE1  
10Ω  
LT3497  
60  
55  
50  
LED1  
CTRL1  
LED2  
CTRL2  
GND  
OFF ON  
OFF ON  
3497 TA06a  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
0
5
10  
15  
20  
LED CURRENT (mA)  
C1, C2: TAIYO YUDEN GMK212BJ105KG  
C3: TAIYO YUDEN LMK212BJ105MG  
L1, L2: MURATA LQH32CN150K53  
3497 TA06b  
3497f  
17  
LT3497  
TYPICAL APPLICATIONS  
Li-Ion to 6/6 White LEDs  
V
IN  
Conversion Efficiency  
3V TO 5V  
80  
75  
C3  
1µF  
V
= 3.6V  
IN  
6/6LEDs  
L1  
15µH  
L2  
15µH  
SW1  
V
SW2  
70  
65  
IN  
CAP1  
CAP2  
R
R
SENSE2  
SENSE1  
LT3497  
C1  
1µF  
C2  
10Ω  
10Ω  
1µF  
LED1  
CTRL1  
LED2  
CTRL2  
60  
55  
50  
GND  
OFF ON  
OFF ON  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
3497 TA07a  
0
5
10  
15  
20  
LED CURRENT (mA)  
C1, C2: TAIYO YUDEN GMK212BJ105KG  
C3: TAIYO YUDEN LMK212BJ105MG  
L1, L2: MURATA LQH32CN150K53  
3497 TA07b  
2-Cell Li-Ion Movie and Flash Mode/6 White LEDs Control  
V
IN  
Conversion Efficiency  
6V TO 9V  
C3  
85  
80  
75  
70  
1-100mA LED/6 LEDs  
1µF  
L2  
15µH  
R
SENSE1  
1Ω  
C1  
4.7µF  
CAP1  
LED1  
V
IN  
SW2  
CAP2  
R
SENSE2  
L1  
15µH  
LT3497  
D1  
C2  
1µF  
10Ω  
SW1  
LED2  
CTRL1  
CTRL2  
GND  
FLASH  
OFF ON  
1.5V  
MOVIE  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
V
680mV  
CTRL1  
3497 TA08a  
65  
6
6.5  
7
7.5  
(V)  
8
8.5  
9
MODE  
MOVIE 100mA  
FLASH 200mA  
I
LED  
C1: TAIYO YUDEN LMK212BJ475KD  
C2: TAIYO YUDEN GMK212BJ105KG  
C3: TAIYO YUDEN LMK212BJ105MG  
D1: AOT-2015 HPW1751B  
V
IN  
3497 TA08b  
L1, L2: MURATA LQH32CN150K53  
3497f  
18  
LT3497  
PACKAGE DESCRIPTION  
DDB Package  
10-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1722 Rev Ø)  
0.64 0.05  
(2 SIDES)  
0.70 0.05  
2.55 0.05  
1.15 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
2.39 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.40 0.10  
3.00 0.10  
(2 SIDES)  
TYP  
6
R = 0.05  
TYP  
10  
2.00 0.10  
PIN 1 BAR  
(2 SIDES)  
TOP MARK  
PIN 1  
R = 0.20 OR  
(SEE NOTE 6)  
0.25 × 45°  
0.64 0.05  
(2 SIDES)  
0.25 0.05  
CHAMFER  
5
1
(DDB10) DFN 0905 REV Ø  
0.75 0.05  
0.200 REF  
0.50 BSC  
2.39 0.05  
(2 SIDES)  
0 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3497f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3497  
TYPICAL APPLICATION  
2 Li-Ion to 8/8 White LEDs  
Conversion Efficiency  
V
IN  
6V TO 9V  
85  
80  
75  
V
= 7.2V  
IN  
C3  
1µF  
8/8LEDs  
L1  
15µH  
L2  
15µH  
SW1  
V
SW2  
IN  
70  
65  
60  
55  
50  
CAP1  
CAP2  
R
R
SENSE2  
SENSE1  
LT3497  
10Ω  
10Ω  
LED1  
CTRL1  
LED2  
CTRL2  
C1  
1µF  
C2  
1µF  
GND  
OFF ON  
OFF ON  
SHUTDOWN  
AND DIMMING  
CONTROL 1  
SHUTDOWN  
AND DIMMING  
CONTROL 2  
5
10  
20  
0
15  
LED CURRENT (mA)  
3497 TA11b  
C1, C2: TAIYO YUDEN GMK212BJ105KG  
C3: TAIYO YUDEN LMK212BJ105MG  
L1, L2: MURATA LQH32CN150K53  
3497 TA11a  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1937  
Constant Current, 1.2MHz, High Efficiency White LED  
Boost Regulator  
Up to 4 White LEDs, VIN: 2.5V to 10V, VOUT(MAX) = 34V,  
IQ = 1.9mA, ISD < 1µA, ThinSOTTM/SC70 Packages  
LTC3200-5  
LTC3201  
Low Noise, 2MHz Regulated Charge Pump White LED Driver  
Up to 6 White LEDs, VIN: 2.7V to 4.5V, IQ = 8mA, ISD < 1µA,  
ThinSOT Package  
Low Noise, 1.7MHz Regulated Charge Pump White LED Driver Up to 6 White LEDs, VIN: 2.7V to 4.5V, IQ = 6.5mA,  
SD < 1µA, MS Package  
I
LTC3202  
Low Noise, 1.5MHz Regulated Charge Pump White LED Driver Up to 8 White LEDs, VIN: 2.7V to 4.5V, IQ = 5mA, ISD < 1µA,  
MS Package  
LTC3205  
High Efficiency, Multidisplay LED Controller  
Up to 4 (Main), 2 (Sub) and RGB, VIN: 2.8V to 4.5V,  
IQ = 50µA, ISD < 1µA, 24-Lead QFN Package  
LT3465/LT3465A  
Constant Current, 1.2MHz/2.7MHz, High Efficiency White LED Up to 6 White LEDs, VIN: 2.7V to 16V, VOUT(MAX) = 34V,  
Boost Regulator with Integrated Schottky Diode IQ = 1.9mA, ISD < 1µA, ThinSOT Package  
LT3466/LT3466-1 Dual Full Function, 2MHz Diodes White LED Step-Up Converter Up to 20 White LEDs, VIN: 2.7V to 24V, VOUT(MAX) = 39V,  
with Built-In Schottkys  
DFN, TSSOP-16 Packages  
LT3486  
LT3491  
Dual 1.3A White LED Converter with 1000:1 True Color PWM  
Dimming  
Drives Up to 16 100mA White LEDs. VIN: 2.5V to 24V,  
V
OUT(MAX) = 36V, DFN, TSSOP Packages  
Drives Up to 6 20mA White LEDs, VIN: 2.5V to 12V,  
OUT(MAX) = 27V, 8-Lead SC70 Package  
White LED Driver in SC70 with Integrated Schottky  
V
ThinSOT is a trademark of Linear Technology Corporation.  
3497f  
LT 1206 • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 9±03±-7417  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0±07 www.linear.com  

相关型号:

LT3497EDDB#TR

IC LED DISPLAY DRIVER, PDSO10, 3 X 2 MM, PLASTIC, MO-229WECD-1, DFN-10, Display Driver
Linear

LT3497EDDB#TRPBF

LT3497 - Dual Full Function White LED Driver with Integrated Schottky Diodes; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3497EDDBTRMPBF

暂无描述
Linear

LT3498

20mA LED Driver and OLED Driver with Integrated Schottky in 3mm x 2mm DFN
Linear

LT3498EDDB

20mA LED Driver and OLED Driver with Integrated Schottky in 3mm x 2mm DFN
Linear

LT3498EDDB#TR

IC LED DISPLAY DRIVER, PDSO12, 3 X 2 MM, PLASTIC, DFN-12, Display Driver
Linear

LT3498EDDB#TRM

IC LED DISPLAY DRIVER, PDSO12, 3 X 2 MM, PLASTIC, DFN-12, Display Driver
Linear

LT3498EDDB#TRMPBF

20mA LED Driver and OLED Driver with Integrated Schottky in 3mm x 2mm DFN
ADI

LT3500

Monolithic 2A Step-Down Regulator Plus Linear Regulator/Controller
Linear

LT3500EDD#PBF

LT3500 - Monolithic 2A Step-Down Regulator Plus Linear Regulator/Controller; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3500EDD#TRPBF

暂无描述
Linear

LT3500EDD-PBF

Monolithic 2A Step-Down Regulator Plus Linear Regulator/Controller
Linear